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Stereoselectivity in the organoiron-mediated synthesis
of (±)-mesembrine
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Abstract

The preparation and structural characterisation of a 1-aryl-substituted electrophilic g5-cyclohexadienyliron complex with the correct
functionalisation as a ‘C12 building block’ for the synthesis of (±)-mesembrine establishes the accessibility of a flattened conformation
to allow nucleophile addition ipso to the arene. The chirality relay in quaternary centre formation by nucleophile addition has been
confirmed, and the product has been converted into the Sceletium alkaloid mesembrine.
� 2007 Elsevier Ltd. All rights reserved.
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The Sceletium alkaloid mesembrine (1)1 is a naturally
occurring serotonin uptake inhibitor2 with a suitable struc-
ture to illustrate the utility of aryl-substituted3 cyclohexa-
dienyliron complexes as central ‘C12 building blocks’4 in
alkaloid synthesis (Fig. 1). The key structural feature of
mesembrine is a saturated pyrrolidine ring fused to a cyclo-
hexanone, with an aryl substituent directly attached to a
quaternary centre at the ring fusion. This type of quater-
nary centre has attracted considerable attention as a syn-
thetic target as it is common in a wide range of alkaloids,
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Fig. 1. Illustration of an example of arylcyclohexadienyliron electrophiles
as C12 building blocks in alkaloid synthesis.
particularly Amaryllidaceae alkaloids5 such as crinine6,7

and maritidine8,9 which have more complex polycyclic
structures. Recently, considerable advances10 have been
made to gain efficient access to structures of this type,
which have important biological activity2,7,9,11 and a suit-
able size and basicity to inspire the design of biomimetic
pharmacophores.12

We have described3 a generally applicable method to
prepare synthetically important13 electrophilic 1-aryl-
substituted g5-cyclohexadienyliron complexes from the
1,4-dimethoxycyclohexadienyliron complex 3 and have
used the method to gain access to the 30,40-methylenedi-
oxy-substituted example 4,3 which has the correct substitu-
tion pattern for use as a C12 building block for crinine
(Scheme 1). A similar approach with a 20,30-diether (elec-
trophile 5) has been used successfully14 in our formal total
synthesis of lycoramine. We describe here, the preparation
of 2 and its use in a four-step15 synthesis of (±)-mesem-
brine (six steps from 3; nine steps from 1,4-dimethoxy-
benzene).

The preparation of the chiral electrophile 2 from its pro-
chiral precursor tricarbonyl(g4-1,4-dimethoxycyclohexa-
diene)iron(0)3,16,17 is an important example of the induction
of asymmetry in multihapto complexes18 and enantioselective
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Scheme 1. Examples of the preparation of 1-aryl-4-methoxycyclohexa-
dienyliron electrophiles.

C. Roe et al. / Tetrahedron Letters 49 (2008) 650–653 651
methods for hydride abstraction have been employed19 in
this step, using chiral analogues20 of triphenylcarbenium
ion reagents. Starting from 2, the electrophilicity intro-
duced into the ligand by the [Fe(CO)3]+ group is used in
both the C-C bond formation steps that establish the chiral
quaternary centre of the target structures. The sense of
asymmetric induction depends on the order of the nucleo-
phile addition reactions, and our short synthesis of (±)-
mesembrine from 2 was undertaken in the racemic series
to prove the relative stereochemistry of malononitrile
enolate addition3,4,14,17 to arylcyclohexadienyliron(1) com-
plexes (i.e., introduction of the arene first, and the CH2CN
moiety second). The exo-stereochemistry of the CH2CN
substituent in the product21 has been proved in this work,
and crystallographic characterisation of both the electro-
phile and the malononitrile adduct are described.

The conditions and solvents used with aryllithium
reagents in reactions of the type shown in Scheme 1 have
been found to be crucial to obtain high yields, since com-
peting addition at CO ligands is possible.22 Our synthesis
of (±)-mesembrine (Scheme 2) thus began with optimisa-
tion of the preparation23 of 3,4-dimethoxyphenyllithium
from 4-bromoveratrole, to check the compatibility with
the solvent used, and the requirements of the organoiron-
mediated step. The efficiency of lithium/bromine exchange
was determined by trapping with trimethylsilyl chloride.
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Scheme 2. Organoiron-mediated
When the reaction was performed with n-butyllithium in
diethyl ether at �30 �C,24 the corresponding arylsilane
was obtained in >77% yield. To prepare 6 (Scheme 2), after
10 min to complete the lithium/bromine exchange of
3,4-dimethoxybromobenzene, the reaction mixture was
cooled to �78 �C and 3 was added in solution in dichloro-
methane.25 Product 6 was obtained in 66% yield and
converted into 2a (55% yield) by reaction26 with tri-
phenylcarbenium tetrafluoroborate in dichloromethane.
The alternative acid-mediated procedure27 proved more
efficient in this case, and using hexafluorophosphoric acid
in acetic anhydride afforded 2b in over 80% yield. The eno-
late was generated from 2-trimethylsilylethyl cyanoethano-
ate by our standard method3,17 and after addition to 2b, the
reaction was quenched with TBAF and heated at reflux for
3 h to effect an in situ desilylation/dealkoxylation/decar-
boxylation of the intermediate, giving access to the
cyanomethyl adduct 7 in 77% yield in a single step.15 Prod-
uct 7 was crystallised from diethyl ether, and the relative
stereochemistry of nucleophile addition to 2b was proved
by X-ray crystallography (Fig. 2b). The expected exo addi-
tion of the malononitrile was thus confirmed. Reduction
with DIBAL in dichloromethane/diethyl ether was fol-
lowed by the addition of ammonium bromide and methyl-
amine in methanol, and then sodium borohydride (added
in three portions as a solid) to allow direct access15 to the
secondary amine 8, which was isolated in 79% yield.
Decomplexation with anhydrous trimethylamine N-oxide28

in acetone followed by quenching with oxalic acid (3 h
at room temperature) and a basic work up afforded
(±)-mesembrine (1) in 52% yield.29

The electrophilic C12 building block was crystallised
from acetone by a two-well diffusion procedure (diethyl
ether in the outer well). The structure (Fig. 2a) shows the
expected orientation of the tricarbonyliron group, which
has one CO ligand lying under the CH2 of the cyclohexa-
dienyl ring. The CH2 group [C(6)] is also bent away from
the principal plane of the haptile part of the ligand
[C(1)–C(5)] in the normal way. Importantly, in the solid
state structure, the dihedral angle between the plane of
the arene and the dienyl ligand is relatively small (+39�),
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Fig. 2. ORTEP drawings of the organometallic electrophile in 2b (a) and
the adduct 7 (b).
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corresponding to the conformation needed to allow access
of the malononitrile enolate to the ipso30 electrophilic cen-
tre [C(1)]. The C(1)–C(8) bond length (1.479 Å) is consis-
tent with significant p overlap between the arene and
dienyl sections of the ligand, and it is proposed that the
electron-rich nature of the aryl ether helps promote the flat-
tening of the structure by promoting electron donation
from the arene.

In conclusion, we have completed a short synthesis of
(±)-mesembrine from the 1,4-dimethoxy salt 3 by a reac-
tion sequence that makes multiple use of the metal, and
have proved that chirality relay from the g5-1-arylcyclo-
hexadienyliron complex 2 promotes exclusive exo addition
of the second nucleophile in the sequence. Complex 2

adopts a flattened conformation in solution to a sufficient
extent to allow efficient nucleophilic addition ipso to the
arene, and a solid state model for this conformation has
been defined. Transfer of electron density from the
aromatic ring to the cationic dienyliron moiety helps
favour the required flattened structure despite free rotation
of the arene. The naturally occurring oxidation patterns of
the arenes of Sceletium and Amaryllidaceae alkaloids are
thus shown to be advantageous in synthetic routes based
on the organoiron C12 building block3,4 approach. Work
is in progress towards the more advanced targets crinine3

and maritidine32 based on these methods.
Crystal data:
Compound 2b: C19.75H21F6FeO6.5P, 563.19 g mol�1,

F(000) 2292, Dc 1.620 g cm�3, l(Mo-Ka) 0.808 mm�1,
monoclinic, C2/c,a 23.652(3), b 13.9637(15), c 14.4029
(15) Å, b 103.940(2)�, V 4616.8(8) Å3, T 100 K; 9868 data,
4251 unique, Rint 0.0486, 317 parameters, wR2 0.0949, S
0.995, R1 (2317 with I > 2r(I)) 0.0518, max. diff. peak/hole
+0.53/�0.60 e Å�3.

Compound 7: C20H19FeNO6, 425.21 g mol�1, F(000)
880, Dc 1.480 g cm�3, l(Mo-Ka) 0.827 mm�1, monoclinic,
P21/c,a 8.9196(13), b 26.161(4), c 9.2714(14) Å, b
118.070(2)�, V 1908.9(5) Å3, T 100 K; 8101 data, 4199
unique, Rint 0.0291, 264 parameters, wR2 0.0857, S 0.990,
R1 (3269 with I > 2r(I)) 0.0402, max. diff. peak/hole
+0.63/�0.32 e Å�3.

Supplementary data

Crystallographic data (excluding structure factors) for
the structures in this Letter have been deposited with the
Cambridge Crystallographic Data Centre as Supplemen-
tary Publication Nos. CCDC 661648 and 661649. Copies
of the data can be obtained, free of charge, on application
to CCDC, 12 Union Road, Cambridge CB2 1EZ,
UK: http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi, e-mail:
data_request@ccdc.cam.ac.uk, or fax: +44 1223 336033.
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